Hyperspectral Unmixing Using Robust Deep Nonnegative Matrix Factorization
نویسندگان
چکیده
Nonnegative matrix factorization (NMF) and its numerous variants have been extensively studied used in hyperspectral unmixing (HU). With the aid of designed deep structure, NMF-based methods demonstrate advantages exploring hierarchical features complex data. However, a noise corruption problem commonly exists data severely degrades performance when applied to HU. In this study, we propose an ℓ2,1 norm-based robust nonnegative (ℓ2,1-RDNMF) for HU, which incorporates norm into two stages structure achieve robustness. The multiplicative updating rules ℓ2,1-RDNMF are efficiently learned provided. efficiency presented method is verified experiments using both synthetic genuine
منابع مشابه
Nonnegative Matrix Factorization With Data-Guided Constraints For Hyperspectral Unmixing
Abstract: Hyperspectral unmixing aims to estimate a set of endmembers and corresponding abundances in pixels. Nonnegative matrix factorization (NMF) and its extensions with various constraints have been widely applied to hyperspectral unmixing. L1/2 and L2 regularizers can be added to NMF to enforce sparseness and evenness, respectively. In practice, a region in a hyperspectral image may posses...
متن کاملSparse Deep Nonnegative Matrix Factorization
Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix fac...
متن کاملHyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization
Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 re...
متن کاملSpectral Signal Unmixing with Interior-Point Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) is an unsupervised learning method that has been already applied to many applications of spectral signal unmixing. However, its efficiency in some applications strongly depends on optimization algorithms used for estimating the underlying nonnegatively constrained subproblems. In this paper, we attempt to tackle the optimization tasks with the inexact Inte...
متن کاملArea-Correlated Spectral Unmixing Based on Bayesian Nonnegative Matrix Factorization
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed method, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2072-4292']
DOI: https://doi.org/10.3390/rs15112900